為機床工具企業提供深度市場分析                     

用戶名:   密碼:         免(miǎn)費注冊  |   點擊 進入企業管理  |   申請VIP  |   退出登錄  |  

English  |   German  |   Japanese  |   添加收藏  |  

車床 銑床 鑽床 數控係統 加工中心(xīn) 鍛壓機床 刨(páo)插拉床(chuáng) 螺紋加工機床 齒輪加工
磨床 鏜床(chuáng) 刀具 功能部件 配件附件 檢驗測量 機床電器 特種加工 機器人

TPI
搜(sōu)索
熱門關鍵字:

數控機床

 | 數控車床 | 數控係統 | 滾齒機 | 數控銑床 | 銑刀 | 主軸 | 立式加工中心 | 機器人(rén)
      用戶頻道:    應用案例 |  汽車 |  模具 |  船舶(bó) |  電工電力 |  工程機械(xiè) |  航空航天 |  儀器儀表 |  通用機械 |  軌道交通 |  發動機加工 |  齒輪加工 |  汽輪機加工(gōng)
您(nín)現在的(de)位置(zhì):數控機床市場網> 專(zhuān)題(tí)>主軸加工(gōng)技術與(yǔ)工藝專(zhuān)題
多約束狀態下重載機械式主(zhǔ)軸有限元建模及模態分析
2013-3-21  來源:  作者:北京工業大學機械工(gōng)程與應用電子技(jì)術學院

      0 前言

 

      隨著數控(Computer numerical control, CNC)床日益(yì)向高速度、高剛度(dù)、高精度(dù)的方向發展,數控(kòng)機床及其核心功能部件的關鍵技術研究越來越受到(dào)重視。重載機械式主(zhǔ)軸(zhóu)係統是重型數控機(jī)床的核心功能部件,具有大功率和大扭矩特點,主要用於鋼、鐵(tiě)、鈦合金等高硬度、難加工材料的大型複雜曲(qǔ)麵零件加工,如三峽工程水輪發電機的大型葉片、大(dà)型船舶推進器、核(hé)電站核島關鍵零件和大型(xíng)汽車覆蓋件模具等特殊零件的加工(gōng)。主軸部件在自身轉動和切削力作用下,容易引起自激和強迫振動,降低主軸(zhóu)係統的(de)加工精度和工件的表麵質量,其動(dòng)態特性直接影響(xiǎng)數(shù)控機床的(de)加工性能。因此,為使(shǐ)重型(xíng)數控機床主軸係統具有剛度高、振動小、噪聲小等良好(hǎo)性能,需要研究(jiū)主軸係統(tǒng)的(de)動態特性,改善其薄弱(ruò)環節,減小其對數控機(jī)床整機的動態性能的影響。重載(zǎi)機械主軸的有限元建模及模態分析正是主軸動態特性分析(xī)的重要組成部(bù)分和進一(yī)步動力學(xué)分(fèn)析的基礎。

 

      主軸係統的動態特性對機床的加工精度和切削效率有直接的(de)影響,會影(yǐng)響到表麵粗糙(cāo)度、顫振、刀具壽命(mìng)和噪聲等,故主軸動態特性研究一直是研究熱點。目前(qián),主軸係統動(dòng)態特性分(fèn)析方法(fǎ)主(zhǔ)要有有限元(yuán)法、集中(zhōng)參數法和傳遞矩陣法等(děng)[1],也有用邊界元法進行(háng)主軸動(dòng)態特性分析,它是一種半數值半解(jiě)析法,具有降維性以及(jí)解析精度高等優點,但由(yóu)於邊(biān)界元法方麵的數(shù)值計算軟件較少(shǎo),邊界元法應用較少。WANG [2]把主軸考慮成(chéng)瑞利梁模型,把角接觸球(qiú)軸承(chéng)考慮為徑向和傾斜彈簧和阻尼器,並通過(guò)建立的有限元模(mó)型表明附加(jiā)的傾(qīng)斜特(tè)性對高(gāo)階振動模態有重要影響KOSMATKA[3] 基於Hamilton 原理建立了二維Timoshenko 梁模型,並在此基礎上進行了有軸向力作用下梁的穩定性分析和振動分析,為主軸建(jiàn)模分析奠(diàn)定了基礎。CAO[4]的主軸係統模型中包含了離心力、陀螺效應、軸承接觸角、預(yù)載、主軸轉子和(hé)軸套偏移等影(yǐng)響,把主軸和(hé)主軸上的剛性圓盤都當(dāng)做Timoshenko 梁來處理。所有的模型中,LI [5-7]建立的機械—熱特性電主軸係統動力(lì)學模型最為(wéi)全麵和完整,該模型包含一個綜合的軸承動態模型、一個主軸動態模型和一個熱模型(xíng),熱模型通(tōng)過軸承配置中的熱膨脹和在整個係統中的熱(rè)傳遞與(yǔ)主軸動態模型耦合起來(lái),計算軸承的熱膨脹及其引起的動態特性變化。GAO[8-9]在主軸係統(tǒng)動力學研究方麵較為前沿,用龍格—庫塔數值模擬主軸—滾動軸承(chéng)係統三種分岔形式,分別為擦邊分岔、倍化分岔、環麵倍化分岔(chà)。羅筱英等[10]研究了結構參數對砂輪主軸係統(tǒng)動態性能的影響,指出支撐剛(gāng)度對模態影響較大(dà),剛度增加(jiā)可使第一(yī)階固有頻率較大幅度地提升,支撐跨距對(duì)模態的影響相(xiàng)對較(jiào)小。JIANG [11]考慮了拉杆(gǎn)對銑削電主軸動(dòng)力(lì)學性能的影響,通過使用傳遞矩陣法和一(yī)個包括離心力和陀螺效應(yīng)的非線性滾動(dòng)軸承動力學模型建(jiàn)立了(le)一個主軸—拉(lā)杆—軸承係統雙回轉軸模型。姚廷(tíng)強(qiáng)等[12]建立了數控萬能工具銑床主軸(zhóu)係統(tǒng)數字樣機並進行了動力學分析,主軸係統考慮(lǜ)為剛柔耦合多體係統進行建模仿真分(fèn)析。熊萬裏等[13]綜述了氣體懸浮電主軸動態(tài)特性研究進展,深入分析和總結了氣(qì)體懸浮電主軸動態特(tè)性的影響因素。

 

      本文以具有大(dà)功率、大扭矩特點的機械式主軸為研究對象,首先,基於Timoshenko 梁理論建立了重載機械式主軸的運動方程,並采用有限元法得到主軸的矩陣形式的動力學方程;同時(shí),在有限元軟(ruǎn)件中分(fèn)別以(yǐ)實(shí)體單元和(hé)梁單元對主軸進行有限元劃分,對軸承以(yǐ)Combin14 彈簧單元劃分,並以自由模(mó)態和實際工況約束條件下進行多約(yuē)束狀態下的重載機械式主軸的模態分析;根(gēn)據軸承型號計算了軸承的徑向剛度,作(zuò)為重載主軸模態分析(xī)中彈簧單元的剛度參數;然後進行了主軸錘擊模態測試,測試結(jié)果較(jiào)好地驗證了重載機(jī)械式主軸多約束狀態下模態分析結果。研究結果為(wéi)重(chóng)載機械主軸係統的進一步優化設計和精度控製提供依據。

 

      1 擺角銑頭及主軸結構

 

      擺角銑頭結構如圖1 所示,主軸係統是(shì)銑(xǐ)頭的重要組成部分;主軸相關參數如表1 所示。擺角銑頭主運動通過滑枕鏜銑頭主軸端麵的端(duān)麵鍵將主軸的轉速及動力傳給擺角頭的輸入軸,該(gāi)運動通過擺角頭內(nèi)兩對直齒輪和兩(liǎng)對等高齒(chǐ)螺(luó)旋傘(sǎn)齒輪(lún)傳遞到擺角頭(tóu)的主軸。擺角頭主軸前(qián)支撐為(wéi)兩組角接觸球軸承組成,主軸的後支(zhī)撐為一組角接觸球軸承,這樣的組合保證主軸具有足夠的剛度和主軸回轉精度。

 

      2 主軸有限元模型的建立

 

      2.1 基於Timoshenko 梁理論(lùn)的(de)主軸有限元建模

 

      對主軸以Timoshenko 梁理論進(jìn)行建(jiàn)模(mó),主(zhǔ)軸上任意點的(de)坐標與主軸位移u,v,w, y , z有關。假設主軸軸線與笛卡爾(ěr)坐標(biāo)係x 軸一致,主軸上任意一點繞y 軸旋轉– y  ,然後繞z 軸旋轉– z ,則主軸上的任意點坐(zuò)標為

 

 

 

 

 

 

      考慮到角位移y z 非常小,對於式(3)中的x項以cos 1 z  ,對於式(3)中的y項以(yǐ)sin z sin y 0   

來簡化(huà)高階旋轉(zhuǎn)項,則(zé)由位移u,v,w, y ,z而決(jué)定的主軸上任意點最終(zhōng)坐標為

 

 

      如果考(kǎo)慮二階應變,任意點的應變表示為

 

 

 

      式中 E —— 主軸材(cái)料彈性模量(liàng)

 

      G —— 主軸材料切變模量

  

      ks—— 剪切係數

 

      V ——主軸體積

 

      把式(11)代入式(shì)(12)後,忽略三階項(xiàng)

 

 

 

      式中 I —— 主軸轉動慣量(liàng)

 

      J ——主軸(zhóu)極(jí)慣性矩

 

      p ——主軸軸向力

 

      未受應力的主軸靜態平衡方(fāng)程的齊次形式為

 

 

      根據邊界條件(jiàn)並將式(17)代入式(16),得到a0e2 16 個係數,再將式(17)代入式(14)並對整個主軸長度(dù)積分,即可得到主(zhǔ)軸單元矩(jǔ)陣形式的動力學方程式

 

 

      式(shì)中 m —— 質量矩陣

 

      mc—— 計算離心力的質量矩陣

 

      g—— 反對(duì)稱陀(tuó)螺矩陣

 

      k —— 剛度矩(jǔ)陣

 

      kp —— 軸向力(lì)引起的(de)剛度矩陣

 

      本文主要研(yán)究多約束(shù)狀態下主軸有限元(yuán)建模、模態分(fèn)析和試驗,對軸向力及轉速的影響,此處不做考(kǎo)慮,因此式(18)變為

 

 

      根據質量陣和剛度陣,可得到主軸的固有頻率。

 

      2.2 自由狀態及節點約束的主軸(zhóu)有限元模型

 

      主軸選用SOLID45 單元進行定義,單元具有塑性、蠕變(biàn)、膨脹、應力強化、大變形和大應變能力。主軸的材料為合金結構鋼,彈性模量為206 GPa,泊鬆比為0.3,密度為7 800 kg/m3。采用手動(dòng)映射網格劃分的(de)方法,對主軸進行網(wǎng)格劃分,劃分後共(gòng)得到10 708 個節點,8 836 個(gè)單元,此即自由狀態下主軸(zhóu)的有限元模型。約束直接(jiē)加在節點上的主軸有限元模型在主軸自由狀態有限元模型基礎(chǔ)上建立,對軸承處主軸上的一圈節點進(jìn)行(háng)約束,前支撐為兩組角(jiǎo)接觸球軸承,後支撐為一組角接觸球軸承(chéng),故前支撐節點進行全約束,後支撐節點軸向自由度放開。

 

      2.3 自由狀態及節點約束的梁單元主軸有限元模型

 

      實際(jì)研究中,常(cháng)將主(zhǔ)軸簡化為梁單元(yuán)進行分析,這種情況下計算效(xiào)率更高,結果(guǒ)也更為準確。

 

      ANSYS 提供了(le)梁(liáng)單元Beam188 , 此單元基於Timoshenko 梁理論,並考慮了剪切變形的影響。本文主軸屬於短粗梁結構,較適合用此單元進行有限元建模,此時(shí)主軸截麵根據主軸等剛(gāng)度原理進行了均一簡化。

 

      對梁采用約束軸承位置處的節點方法進行,主軸前支撐為相反方向的兩組角接觸球軸承,後支撐為一組角接觸球軸承,故前支(zhī)撐節點進行全約束(shù),後支撐節點軸向自(zì)由度放開。

 

      2.4 彈簧單元約束下梁單元主軸有限元模(mó)型

 

      把主軸劃分為梁單(dān)元的分析過程中,可以把軸承的剛度係數直接考慮進來。在主軸的軸承安裝位置處(chù)沿圓周方向(xiàng)均布4 個(gè)彈簧單元來模擬軸承的彈性支承,布置方式如圖3 所示。其中彈簧(huáng)單元外(wài)節點全部約束,前(qián)支撐為一對角接觸球軸承,故對其內(nèi)節點軸向自由度進行約束,後支撐內節點保持(chí)自由狀態。

 

 

      ANSYS 中提供了模擬軸(zhóu)承的彈簧單元Combin14,該單元具有一維、二維或三維應用中的軸(zhóu)向拉伸(shēn)或扭轉的性能,可(kě)以(yǐ)較好地模擬軸承的(de)剛度。彈簧單元Combin14 需要輸入彈簧剛度參數,本主軸采用由SKF 公司所生產(chǎn)的高精密主軸軸承(chéng),軸承的型號為71924ACD/P4A

 

      單(dān)個軸承預緊後的徑向剛(gāng)度kr 可采用(yòng)如式(20)進(jìn)行計算

 

 

      式(shì)中 Z ——軸(zhóu)承(chéng)滾動(dòng)體數目

 

      Db ——軸承滾動體直徑

 

       ——軸承接觸角

 

      Fa0 ——軸承預緊力

 

      由SKF 提供的軸承相關參數如表(biǎo)2 所示(shì)。

 

 

      代入以上參數計算後得(dé)到軸承(chéng)的徑向剛度kr50.7 MN/mm

 

      彈簧單元約束下的(de)梁單元有限元模型,在軸承(chéng)位置處采用(yòng)Combin14 彈(dàn)簧單元進行模擬(nǐ),彈簧單(dān)元外節點(diǎn)全約束,前支撐內節點軸向約束,後支撐內節點(diǎn)保持自由狀態,此時共得(dé)到760 個節點,757個單元。

 

      3 多(duō)約束狀態下主軸模態(tài)分析

 

      主軸動力學模型建好後,分別基於以上有限元模型進行以下(xià)情況的主(zhǔ)軸模態分析。基於(yú)Timoshenko 梁的主軸固(gù)有頻率的計(jì)算、自由狀態下(xià)主軸實體模態分析、節點約(yuē)束的主軸實體模態分析、自由(yóu)狀態下Beam188 梁單元的主(zhǔ)軸模(mó)態分析、節(jiē)點約束的Beam188 梁單元主(zhǔ)軸模態分析和彈簧單元約束下Beam188 梁單元主軸模態分析情況。由於主軸的1 階(jiē)和4 階模態對(duì)主軸前端影響較大,最容(róng)易影響主軸的切削穩(wěn)定性。因此,在如下模態分析中(zhōng)給出主軸前6 階(jiē)頻率以及1 階和4 階的振型(xíng)。

 

      3.1 自由狀態下主軸模態(tài)

 

      在完全自(zì)由狀(zhuàng)態下對主軸進行模態(tài)分析,不施加任何約束(shù),前6 階頻率如表3 所(suǒ)示。由於主軸在完全自由狀態下,所以主軸(zhóu)前6 階振動為剛體(tǐ)運動,為(wéi)主軸(zhóu)剛體模態,固(gù)有頻率為零,從第7 階(jiē)開始具有頻率值,當(dāng)做(zuò)第1 階模態。14 階(jiē)振型如圖4所示。

 

 

 

      從圖4 可以看出,1 階振(zhèn)型為主軸一次彎(wān)曲;4階振型(xíng)為主軸收(shōu)縮,是由於主軸大端具有刀柄(bǐng)結構,且主軸刀柄端直徑較(jiào)大,為主軸高階振型的表現。

 

      其意義在於,主軸收(shōu)縮對(duì)主軸、軸承(chéng)的配合、間隙以及預緊具有重要影響,但4 階時頻率較高,實際機械主軸達不到如此高的頻率。

 

      主軸為軸對稱結(jié)構,12 階頻率相近,為主軸沿兩個(gè)徑向(xiàng)方向振動的頻率,振型為(wéi)沿兩個徑向方向的振動。

 

      3.2 節點約束的主軸模(mó)態

 

      對主軸采用在主軸上軸承處的一圈節點進行約束,前支撐節點進行(háng)全約(yuē)束,後支撐放開其軸向自由度。求解後,各階頻(pín)率如表4 所(suǒ)示(shì),14 階(jiē)振型如圖5 所(suǒ)示。

 

 

      從圖5 可以看出,1 階振型(xíng)為主軸彎曲,4 階(jiē)為主軸扭轉。

 

      3.3 自由狀態(tài)下(xià)Beam188 梁單元的主軸模態

 

      采用自由狀態下(xià)簡化為(wéi)梁單元的主軸有限元模型進行模態分析,同樣,前(qián)6 階為主軸剛體(tǐ)模態,頻率為(wéi)零,從第7 階開始,其前6 階頻率如表5 所示,14 階振型如圖(tú)6 所示。

 

 

      一次彎曲,4 階振型為主軸二次彎曲。

 

      3.4 節點約(yuē)束的Beam188 梁單元主軸模態

 

      采用主軸簡化為梁單元(yuán)狀態下的有限元模型進行模態分析,施加約束求解(jiě)後,前6 階頻率如表6 所(suǒ)示,14 階(jiē)振型(xíng)如圖7 所示(shì)。

 

 

      通過動畫及振型圖可以看出,1 階振型為主軸一次(cì)彎(wān)曲,4 階為主軸扭轉。

 

      3.5 彈簧單元約束(shù)下Beam188 梁單元的主軸模態

 

      主軸(zhóu)簡化為梁單元並施加彈簧剛度,求解後,前6 階頻率如表7 所(suǒ)示,14 階振型如圖(tú)8 所示。

 

 

 

      從圖8 可以(yǐ)看出,1 階振型為(wéi)主軸一次彎曲,4階振型為主(zhǔ)軸前端彎曲。

 

      3.6 模態結果分析比較

 

      表8 為各種情況下主軸模(mó)態有限元分析(xī)結果的對照(zhào)表,圖9 為(wéi)主軸頻率比較折線(xiàn)圖。

 

 

      從表8 和圖9 可以看(kàn)出,實體單元本身頻率比較(jiào)時,約束狀態的頻率比自由狀態下的高出300Hz,是由(yóu)於施加約束後,主軸剛度隨之增加的緣故。主軸(zhóu)劃分為梁單元時,Timoshenko 梁單元計算的(de)結果和Beam188 梁單元自由狀態下的一階頻率誤差隻有1.4%Timoshenko 梁的計算結果偏(piān)高。約束加在梁單元節點上的一階頻率為最高,彈簧(huáng)單(dān)元約束梁情況的(de)頻率和Timoshenko 梁的誤差隻有(yǒu)0.6%。以上表明(míng),Timoshenko 梁和Beam188 單元(yuán)來計算主軸的固有頻率更符合實際情況,因為Timoshenko梁情況考慮因(yīn)素最為全麵,而(ér)加入(rù)彈簧單元後的梁單元更符合主軸係統的實際工況。從結果上可以看出,針對短粗的主軸結構,采用具(jù)有剪切效應的Timoshenko 梁或Beam188 單元對主軸計算(suàn),計算結果更為準確。由於實體(tǐ)單元自由度的限製(zhì),實體單元計算的主(zhǔ)軸模態誤差較大,與(yǔ)Timoshenko 梁計算(suàn)結果比,誤差達11.4%。因此,在(zài)沒有試驗的情況下,對主軸進行Timoshenko 梁計算和把主軸考慮為具(jù)有剪切效應(yīng)的Beam188 梁單元並加入彈簧單元約束兩種方式(shì)的計(jì)算(suàn)結果更為準確。

 

      4 重載機械式主軸(zhóu)試驗

 

      本試驗采用LMS振動測試係統配(pèi)備BK加速度傳感器對主軸進(jìn)行振動測試。由(yóu)於主軸結構和質量較小,較小的瞬間激勵力即可把主軸(zhóu)的前幾階頻率和振型激勵出來,故將主軸用軟繩吊起模擬(nǐ)自由(yóu)狀態,激勵方式(shì)采用力錘進行(háng)激勵,主軸現(xiàn)場測試如圖10 所示。主軸(zhóu)為對稱(chēng)結構,沿主軸(zhóu)軸線共布置了八個加速度傳感器,在主軸前端(duān)進行徑向激勵,激勵方向與傳感器感應方向一致。自由模態頻率比較折線如圖11 所示,試驗及主軸考慮(lǜ)為Timoshenko梁的仿真頻(pín)響如圖12 所示。由於主軸為(wéi)對稱結構, 12 階為(wéi)主軸兩個徑向(xiàng)方(fāng)向的模態,因此試驗(yàn)時,隻提取了1 階模(mó)態;3 階模態為主軸的扭轉,單(dān)方向的傳感器不能有效測試出來;45 階為主軸沿兩個徑向方向的2 次彎曲,試驗中提取(qǔ)了4 階模態。

 

 

 

      由頻響函數可知,低階時試驗數據與主軸仿真數據有一定誤差,誤差為7.2%,在可接受範圍之內。產生誤差的原因是在以Timoshenko 梁建(jiàn)模時對主軸的階梯和(hé)錐孔等進行了簡化,盡管本著等剛度原則,但質量變小,頻率仍(réng)然偏高,另外,試驗過程中測試環境、傳感(gǎn)器等(děng)對準確(què)的測試結果也有影響。

 

      5 結論

 

      (1) 進行了基於Timoshenko 梁的重載主軸建模,建模過程中考慮了主軸的剪(jiǎn)切力和轉動效應,在動力學方程中包括了離心力引(yǐn)起的質量矩(jǔ)陣(zhèn)、反對稱陀螺矩陣及由於軸向力引起的剛度矩(jǔ)陣。

 

      (2) 把主軸考慮為Timoshenko 梁單元和Beam188 梁(liáng)單元進行主軸有限元建模和模態分析時,結果更為準確,彈簧約束(shù)梁情況更(gèng)符合(hé)實際(jì)情況。彈(dàn)簧單元約束梁和Timoshenko 梁情況的主軸一階頻率誤差隻有0.6% Timoshenko 梁(liáng)單元和Beam188 梁(liáng)單元自由狀(zhuàng)態下的一階頻率誤差為1.4%

 

      (3) 主(zhǔ)軸模態試驗為驗證主軸有限元建模及模態分析準確(què)性的直接手段。但Timoshenko 梁建模時有(yǒu)一定簡化,以及(jí)試(shì)驗過程中本身的一些誤(wù)差,因此試(shì)驗與仿真的結(jié)果雖(suī)然有(yǒu)一定(dìng)誤(wù)差,但在(zài)允許範圍之內。

 

      (4) 仿(fǎng)真與試驗對比時,試驗模型和計算及仿真模型的一致性非常重要(yào)。如差異(yì)較大,隻能驗(yàn)證建模方法的正確性或驗證(zhèng)結果的(de)趨勢,很難得(dé)到數值的(de)一致性。

    投稿(gǎo)箱:
        如果您有機床行業(yè)、企業相關新聞稿件發表,或進行資訊合作,歡迎聯(lián)係本網編輯部, 郵箱:skjcsc@vip.sina.com
分享到(dào): 新浪微博 騰訊微博 人人網 QQ空間
名企推薦
山特維克可樂滿
哈斯自動數(shù)控機械(上海)有限公司
西門子(中國(guó))有限(xiàn)公司
哈挺機床(上海)有限公司
北京阿奇夏米爾技術服務有限責任公司(sī)
陝西秦川機械發展股(gǔ)份(fèn)有限公司
国产999精品2卡3卡4卡丨日韩欧美视频一区二区在线观看丨一区二区三区日韩免费播放丨九色91精品国产网站丨XX性欧美肥妇精品久久久久久丨久久久久国产精品嫩草影院丨成人免费a级毛片丨五月婷婷六月丁香综合